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ABSTRACT

A class of sequential designs for estimating the percentiles of a quantal

response curve is proposed. Its updating rule is based on an efficient

sumary of all the data available via a parametric model. The "logit-MLEV

version of the proposed designs can be viewed as a natural analogue of the

Robbins-Monro procedure in the case of binary data. It is shown to be asymp-

totically consistent, distribution-free and optimal via its connection with

the latter procedure. For certain choices of initial designs the proposed

method performs very well in a simulation study for sample sizes up to 35. A

nonparametric sequential design, via the Spearman-kNrber estimator, for

estimating the median is also proposed.
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SIGNIFICANCE AND EXPLANATION

In many physical or biological experiments with binary response a quantal

response curve is assumed to relate the probability of response to the

corresponding level of the stimulus variable. To estimate the percentiles of

the quantal response curve efficiently, a sequential design is often used in

practice. We propose a new class of sequential designs with updating rules

based on an efficient summary of all data available via a parametric model.

This method is shown to be asymptotically as good as the optimal stochastic

approximation method. More importantly, its finite sample performance in a

simulation study is often better than the latter method. For fixed initial

designs, the percentage of runs saved by using our method ranges from 25% to

57%.
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EFFICIENT SEQUENTIAL DESIGNS WITH BINARY DATA

*
C. F. Jeff Wu

1. Introduction

A sensitivity experiment is characterized by a response curve that

relates the stimulus level applied to an experimental subject to the

probability of response. The outcome of the experiment is assumed

dichotomous, response or nonresponse. This situation arises in many fields of

research. In testing the strength of materials, the stimulus level may be the

level of impact energy applied to a piece of material, and the response is

either "fail" or "not fail" (Wetherill, 1963). In testing explosives, the

stimulus level may be the height from which a weight is dropped or the

pressure directly applied to the explosive, and the response is "explode" or

"not explode" (Dixon and Mood, 1948). In biological assays a test animal

survives or not at a given dose level (Finney, 1978). In psycho-physical

research the probability of detecting a stimulus is related to its intensity

level (Rose et al., 1970). In educational testing, one may want to study the

"item characteristic curve" that relates the difficulty level of the test item

to the probability of "right" or "wrong" answer (Lord, 1971).

Our main interest is in estimating the percentiles of the response curve

F(x), which is the probability of response for a given stimulus level x.

The 100p percentile Lp is defined as

(1) F(Lp) - p
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For simplicity we assume F is monotone increasing and continuous. The

%Imedian of F, LO.5 , is the most commonly used measure of a characteristic of

the response curve. In some situations estimating L0.5  is of intrinsic

interest, but more often it is because L,.5 is easy to estimate. In quality

assurance it may be more relevant to study the extreme percentiles, e.g., to

Afind the impact energy level that results in the failure of material for at

most 10% of the time. On the other hand L0.9 may be more relevant in

, explosive research.

In this paper we will present some new sequential designs for the

efficient estimation of Lp for small or moderate sized experiments. The

sequential designs are constructed in such a way that all the information in

the previous runs can be efficiently utilized in suggesting how the next run

should be conducted. When the experimental runs are very expensive, the

saving of a few runs by an efficient design outweighs the extra pains taken in

designing a sequential experiment. The sequential nature of the design

requires quick responses so that the experiment will not be unduly prolonged.

It is suitable, for example, when the experimental facility is limited so that

the experiments must be performed one after another. It is not applicable to

many biological experiments that involve inexpensive animals and slow

responses. Therefore our method is more appropriate for expensive experiments

with short response time, which are more often encountered in engineering

research. In educational or psychological testings, if a test has to be

repeated routinely on many subjects, it pays off to automate the design and to

look for the most efficient ones (in terms of reducing the number of test

items).

In the next section we shall review two nonparametric sequential designs

(the Robbins-Monro and the Up-and-Down methods) with special reference to

small sample binary experiments. Our approach is to assume a parametric model

-2-

j, ,# , , ,-%:% -,- - - . -. ; -. - , . ** - ** -a 6h



for the response curve and estimate efficiently the relevant parameters in the

model based on all the data available. An estimated quantal response curve

(EQRC) is constructed through the current estimate of the parameters and the

next design point is determined from the EQRC. If the two-parameter logistic

model is used and the parameters are estimated by the maximum likelihood, we

call it a "logit-MLE" design. It is demonstrated heuristically to be a

natural analogue in the case of binary data, of the Robbins-Monro (RM)

procedure for continuous data. Its consistency is proved under two sets of

restrictive conditions. Assuming consistency, it is shown to be asymptotic-

ally equivalent to an adaptive Robbins-Monro procedure. Therefore it is

asymptotically distribution-free and optimal (in a sense defined in Section

2), two properties enjoyed by the latter procedure. Truncated versions, (10)

and (21), of the two methods are considered for the purpose of stabilizing

their performance. They are compared with the nonadaptive R4 procedure in a

simulation study for sample sizes up to 35. If a fixed initial design with

wide-spread design levels is chosen, the logit-MLE design seems to take full

advantage of the information in the past data. It substantially outperforms

the adaptive R procedure, which in turn outperforms the nonadaptive R3

procedure. On the other hand, if a (nonadaptive) RK procedure is used in

generating the initial design levels, the relative performance of the non-

adaptive 3M design and the two adaptive designs (RM and logit-MLE) depends on

the starting value x, and the constant c (formula (2)) in the W4 pro-

cedure. For good choices of x, and c (specified in Section 7), which

usually requires some prior knowledge about the unknown response curve, the

nonadaptive R4 design performs very well. In the absence of such knowledge,

the two adaptive designs perform better. Detailed comparisons and further

remarks are found in Sections 6 and 7. A nonparametric sequential design for
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estimating the median L0.5 is proposed via the Spearman-K~rber estimator.

Its limitations are discussed.

2. Review and criticism of the Stochastic Approximation method and the

Up-and-Down method.

The Stochastic Approximation method and the Up-and-Down method are two

most commonly used nonparametric sequential designs for quantal response

problems.

Stochastic Approximation Method (Robbins and Monro, 1951):

thh
Let Yn 1 or 0 as the nt experiment results in a response or non-

response. For estimating Lp, the stimulus level xn+1 of the (n+1) run

is chosen according to

(2) Xn+l Xn . (ynp)

According to the results of Chung (1954), Hodges and Lehmann (1955) and Sacks

(1958), it is optimal to choose c in (2) to be equal to (F'(Lp))- in the

sense of minimizing the asymptotic variance of /n(x n-L p) within the class

(2). Except for normal errors, the resulting procedure is not asymptotically

fully efficient, that is, its asymptotic variance does not achieve the Cramer-

Rao lower bound. Abdelhamid (1973) and Anbar (1973) proposed to transform

- p in order that the asymptotic variance of /(x -p) be minimized.Yn P n

However the optimal transformation depends on the distribution of the errors,

which is typically unavailable to the experimenter in the situations under

consideration. For the rest of the paper, any procedure that achieves minimal

asymptotic variance within the class (2) will be called asymptotically optimal

without special reference to (2).

The small sample behavior of (2) depends very much on a good starting

value x, (Wetherill, 1963). Ideally x, should be close to L p A good

guess of the optimal constant c may also be hard to come by since in most
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practical situations the experimenters have little idea about the slope of

F at L p Poor choice of c and x, will make (2) an inefficient procedure

for small and even moderate samples. The stochastic approximation method has

been used more effectively in on-line estimation wherein a large number of

data have to be processed quickly.

To achieve minimal asymptotic variance within the class (2), it is

necessary to estimate the slope F'(L p). One such estimator is the regression

slope of Yj over xi,

n

y. Y(x-) - n8n" n 'n "n i 

(x _X x 2

which gives the following adaptive Robbins-Monro procedure

1
(2a) Xn " " - (y - p )  "n

n

Under various regularity conditions, Anbar (1978) and Lai and Robbins (1981)

proved that Bn  converges to F'(Lp) and the procedure (2a) has the same

asymptotic distribution as the optimal nonadaptive Robbins-Monro (RM)

procedure (2) with c - (F'(Lp))" 1 .

The IRt procedure can be given a finite sample justification if y and

x are related via a simple linear regression model

Yw a a + Bxi + ei

where ei  are i.i.d, normally distributed with 
mean zero and variance o 2

Assume B is known and the parameter of interest is e - -u/B, the solution

of the linear equation a + Bx. Then it can be shown that (Lai and Robbins,

1979, Lema 1) the N procedure

n -1(3) Xn~l "Xn -y n ,n c- B

is equivalent to the procedure

A -- A

(3'Xn+1 xn- -/

where a n  y- Bxn is the maximum likelihood estimate (MLE) of Q. There-

. .... ... .... .,.....



fore the next design point xn+1  according to (3)' is the solution of the

estimated linear equation

F (x)= a + Ox, a =MLE of an n n

Although this justification is specific to the linearity of Ey in x and

the normality of error ei, the consistency and asymptotic normality of the

non-adaptive 94 procedure (3) hold under much weaker conditions. The

equivalence of (3) and (3)' breaks down when 0 is replaced by 6n . Since
n

n is close to 6 for large n, it may not be unreasonable to interpret then

adaptive R4 procedure (2a) with p - 0 as an approximation to the solution of

the estimated linear equation

a n + n x, (a ,n') = MLE of (a,O)

for the simple linear regression model and large n. For the problem of

estimating L - F -1(p), it can be viewed as a stochastic version of the

Newton-Raphson method for solving F(x) - p by the tangential approximation

to F at x with F(x ) replaced by y and F'(w ) by 0 ' The
n n n n n

procedure (2a) is aptly called a "stochastic Newton-Raphson" method in Anbar

(1978).

When n is small or the current guess xn is on the tails of the

response curve, n may behave erratically. Since the tails of the response
n

curve are flat, Bn  with {x 1I located on either tail tends to be closer to

zero, thus making the adjustment from xn to Xn+1 in (2a) unreasonably

large. (It reminds us of the well-known numerical instability of the Newton-

Raphson method for solving the quantal response equation F(x) = p when the .

starting value x, is on the tails of F.) This happens when the initial

guess is poor for estimating the median or when the initial design takes too

few points on the middle part of the response curve for estimating the extreme

percentiles. To remedy this, we propose to truncate B , that is, to usen

mx(min(B ,d),8) instead of 0 for some positive constants d > 6. The
a n
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simulation study of Section 6 shows that there is considerable improvement in

using this truncated version of (2a).

Up-and-Down method (Dixon and Mood, 1948):

(4) x n+I m if Yn

The method works only for L0,5 . It is very simple to implement but, for

small or moderate samples, its performance depends very much on a good guess

of x, and A. Unless the step size A is made adaptive, the large sample

property of xn cannot be studied. Its empirical performance is usually not

as good as the Stochastic Approximation method. This and several modifica-

tions of the two methods can be found in Wetherill (1963, 1966).

Both methods are "Markovian" in that the choice of the next run depends

sensibly on the outcome of the current one. Their simplicity was a crucial

factor when inexpensive computing was not accessible. Their main disadvan-

tages are: (a) The updating rules (2) and (4) do not make use of all the data

available in an efficient way, and thus making the choice of step size less

flexible. (b) Their small sample behavior depends on a good choice of the

relevant constants in (2) and (4), which in turn depends on the experimenter's

knowledge of the unknown response curve F. For small or moderate sized

experiments with expensive runs, inefficiency and lack of robustness can be

quite serious. Large sample properties, which depend on locally linear

approximations, are not always relevant in this context.

To overcome the shortcomings (a) and (b), an alternative method is

proposed in the next section.

-7-
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3. A class of sequential designs based on the estimated quantal response

curve.

Ideally we would like to have a good estimate F nof the whole curve F,

from which the next design point xn+l is chosen to be its 100p percentile,

i.e.* F (x )-p. A (smooth) nonparametric estimate F of F is not
n n+1 n

feasible since it requires a large number of observations for F nto be a

good estimate. A natural approach for small sample problems is to assume a

a~ parametric model

FVx) = HWx1), H is continuous in x,

lim H(x(8) - 0, lim H(x18) - I
x.-M X m0f

The general recipe of our sequential design procedure for estimating r.p is:

Mi find an efficient estimate 8 - 8((y# n~I~' of 8

(5) (11) define the estimated quantal response curve (EQRC)

F n(x) - H(xje)n

and choose the next design xn+1 s-t. F n(x n) =p.

Probability of response

1.0

/F F

Level of stress

Figure 1. A representation of procedure (5) with p =0.5
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If H(xle) in (5) equals a + Bx, B known, and the continuous

measurement y is related to x through a simple linear regression model

with normal error, the procedure (5) with the maximum likelihood estimate is

-identical to the nonadaptive R4 procedure (2) with c = • See the dis-

cussion following (3) and (3)'. In this sense our proposal can be viewed as a

natural analogue of the R4 procedure for binary data. Since the straight line

model Ey = a + Ox provides a finite sample justification for the 1M method

for continuous y, it would seem natural to use the two-parameter logit curve

(6) H(xlO) = (1 + eX(xa) , X > 0, 6 = (Q,X)

for modelling the binary response y and the stimulus level x in procedure

(5). If X in (6) is chosen to be a known constant, the resulting procedure

(5) is nonadaptive. When a and X are both estimated from the data, (5) is

adaptive.

SC If the experimenter has some knowledge about his problem, it should be

taken into account in the choice of the parametric model H( 10). Given this

* :" model were there a reliable prior on 6, a Bayesian approach (Freeman, 1970;

- Tsutakawa, 19721 Owen, 19751 Leonard, 1982) for estimating e would be appro-

priate. In the absence of such information, it seems appropriate to use a

simple model like the logit or probit.

The main reason for preferring logit to its competitor, the probit model,

S(z-u) 2
jx e 2 8=(i2 a

(7) O(x e) -2a dz, ,, > 0

is computational ease. It is well known that the logit, the probit and other

parametric models like the angular and the linear curves agree very closely in

the range 0.2 to 0.8 (Cox, 1970, Table 2.1). We do not see any advantage

in using the probit over the logit. It is rarely the case that a parametric

quantal response model be justifiable on biological or physical grounds. The

-9-
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successful use in practice of the parametric approach for quantal response

problems is mainly due to this key fact that the parametric curves (after

adjusting for location and scale) agree very closely in a wide range of p

.. values.

For p outside [0.1,0.93 the percentiles for different parametric

models vary greatly. The choice between (5) and (2) (or (2a)) is not clear-

cut. The procedure (5) is more vulnerable to the misspecification of F. On

the other hand, the RK procedure (2) or (2a) will require a very large sample

size to become distribution-free. For instance, the method makes on the

average nine negative moves for each positive move in the neighborhood of

L0.9. Instead of "straddling" L0.9, the sequence makes far too many moves

in one direction. This may explain the much poorer empirical performance of

the M method (2) even for moderate percentiles like L0 7 5 (Wetherill, 1963,

16).

The next issue is the choice of efficient estimator n in (5) (1). The

minimum logit chi-square method (Berkson, 1955) is not suitable for the kind

of data generated by a sequential procedure like (5), especially for small or

moderate samples. This is because there are few, and typically only one or

two, observations at a given x level to make the minimum logit chi-square

work. Unless we restrict the search of design levels to a small number of x

levels, the situation will not change much. The same remark applies to the

minimum modified chi-square method, and to a lesser extent, to the minimum

chi-square method. The maximum likelihood estimate of (c,X) in (6) is

obtained by iteratively solving the equations

n n

H H(x i i) - I.
i"1 1

(8)

n nSxH(xJQX - yixi,
1 1

-10-
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,.,-X,(x-ci) -1 * *

where H(xca,X) = (1 + e ) . The MLE (a,X) is a function of the

sufficient statistics (E yi, E yixi) and is asymptotically efficient given

the right model. Under (6),
.11

SP p

1 1
L ~- - Zn(- 1

For the implementation of (5), it is important to know when the MLE

exists. Assume there are at least two distinct xi's. It is known

(Silvapulle, 1981) that the MLE of the "linear" parameters (A,Xa) in the

logit model (6) exists uniquely if and only if the following "interlocking"

condition is satisfied,

". min' max) (cmin, x;ax) is non-empty

or

9.2xmin < x;in - x;ax < xmax

or

(9.3) )Cin < xmin ' xmax < Xmax

where +xmin) - max(min) {x max(min)

x1 : Y, W 01. The same result holds for more general distributions F

including the probit model (7). See Silvapulle (1981, Theorem (iii)). It is

easy to see that (9), once satisfied, is always satisfied by the addition of

more observations.

If the XLE is chosen for (5 i), it is critical not to start the iteration

in (5) until the condition for the existence and uniqueness of the HLE is

satisfied. A premature start of the procedure (5) will lead to inconsistent

estimate as the following example shows. When (9.1) - (9.3) are violated, the
. + +

two intervals Ejn' X;ax] and [x.in' xmaxl separate or share one point in

common. MEpoint in IXx, + in] (or [X+ax , xinl whichever applies)

maximizes the likelihood. Take an observation at any such point will again

-11-
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violate (9.1) - (9.3). By repeating (5), a sequence of xn  will be obtained

that lie in the initial interval [ xs +in]"  If the initial interval does

not contain the true parameter Lp, the estimate xn  for any large n will

never be close to L•

I The question of conducting the initial runs before there is a unique MLE,

is very difficult unless some prior knowledge is available. It may be done in

an ad hoc manner aided with experience, or by the 14 procedure (2) with a

reasonable guess of x, and a slightly larger c than the experimenter's

guess. Wetherill (1963) showed that the procedure (2) with larger c is less

susceptible to a poor choice of x, especially for small samples (see also

the discussion of Table IV).

The change from xn to xn+ 1 via the logit-MLE method may be unduly

large when the problem is mill-posed." It happens in the first few runs after

the existence and uniqueness of the MLE is first satisfied. We propose a

truncated version as follows. Define dn as the solution of Xn+1 -

d ^ A

x - -- (Y - p), where xn+ 1  tn(p-n) and (a A is the
n n n n1 n n n n

solution of (8). The (n+l)th design level is chosen to be

d*

(10) xn - n (Yn dP),n = max(6, min(d ,d)), d > 6 > 0

According to the simulation results, this truncation turns out to be very

effective.

Since the logit (and any other parametric) assumption is vulnerable on

the extreme tails, it may be desirable to use an estimation method that places

less weight on the observation with more extreme xi. For data generated by

sequential procedures like (2), (4) and (5), the xi's in the initial runs

tend to be more extreme. A simple way to achieve this is to insert weight

vi - w(Ixi-XnI) on both sides of (8) and solve iteratively the weighted

version of the likelihood equation (8), where w(z) is decreasing in z ) 0,

-12-
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and xn is considered to be a good estimate of L If we choose w i  to

be 0 or 1, it is equivalent to performing the unweighted MLE based on a

subset of data with moderate xi's. The general question of robut estimation

for quantal response data was addressed in Miller and Halpern (1980).

For small n we advocate the use of a simple model like the logit for

procedure (5) since it is difficult to discriminate between two binary

response models (Chambers and Cox, 1967). For larger n, a symmetric logit

or probit model will not be appropriate if the true F is skewed. A three-

parameter model may be used in (5) when the data indicate that the additional

skewness parameter is indeed significant. This will make the procedure (5)

less susceptible to the incorrect initial choice of the parametric model. A

skewed logit model, (22), will be considered in Section 6.

An important question, which is beyond the scope of the paper, concerns

the time to terminate the experiment with adequate information. Let v be an

estimate of the variance var(L n )) via the assumed parametric model, where
4 p
L(n) is the MLE of L, from the first n observations. A stopping rule may
p

be devised based on the value of v.

4. A sequential design for estimating L0.5 based on the Spearman-

Kirber estimator

If the unknown response curve F(x) = H(x-a,*) is skew-symmetric about

a, i.e. H(z,#) + H(-z,o) - 2H(0,*) for any z, *, a is both the median

L0. 5 and the mean of F. The Spearman-KIrber estimator (Finney, 1978,

p. 394) is a nonparametric estimator of the (discretized) mean of F,

SK ( J - P - 1) j x +x.) ,

where x, < ... < xj, nj observations are taken at xj with rj responses,

pj r /ni, n E n J* Under conditions that ensure that aSK is an

-13-
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efficient estimator of a, an alternative sequential design for estimating

- the median L0. 5 w a is the following:

(i) compute K  
,((Y x )SK SK( ( i  1'

((n)

(ii) set xn+l - SK

The two distinct advantages of the procedure (11) are: 1) computational

ease, 2) weak assumption on F, i.e., the functional form of H is not

assumed known. But the price to pay for these is quite dear. The conditions

required to ensure a proper performance of (11) are quite restrictive. First,

F should be skew-symmetric so that its mean and median are equal. Since

a' aSK is an unbiased estimator of the discretized mean, not the population

mean, their difference becomes negligible only when the spacing {x i} isi I

reasonably dense. A proper use of aSK requires that x, and xj are

chosen such that F(xI) - 0, F(xj) - 1, which may be hard to achieve in the
p.

initial stage of the type of sequential designs considered in the paper. If

the experimenter has to pray for the validity of these assumptions, the

procedure (11) can not be truly "nonparametric.0 Therefore it will not be

included in the empirical study.

5. Some large sample results concerning the logit-MLE version of the

design (5)

In this section some theoretical properties of the Ologit-MLE" version of

(5) are investigated. Two consistency results are established under rather

restrictive conditions. Assuming consistency, it will be shown that the

*logit-MLE" version of (5) is asymptotically equivalent to the adaptive

Robbins-monro procedure (2a). Since the latter is nonparametric and is asymp-

totically optimal within the class of methods in (2), the former is optimal in

the same sense whether the true F function is logistic or not. For those

-14-



who wonder why a model-based procedure turns out to be asymptotically

distribution-free, we merely recall the fact that the Robbins-Monro procedure

can be formally viewed as a special case of (5) with F(x) being a linear

function in x, although linearity does not play a role in the asymptotic

behavior of the 3M procedure.

First we establish the equivalence of the nonadaptive "logit-MLE" version

of (5) and the nonadaptive R4 procedure for estimating the median L0 5.

Without loss of generality, we assume the scale parameter A in (6) equals

1. According to (5), we have to solve the first equation of (8) for

choosing xn and Xn+l, i.e.,

n-i n-i

i(x i -xn ) I

(12.2) -(x x I .1- 11 11+

Si-1 1 ~ n+l

by substracting (12.1) from (12.2) and after some algebras, we obtain

x -x x n+  x n

(13) a (1-. M 1
Ix-Xxi x -xi ) Yn'i '

(1+. )(1+e • )

which defines xn 1  implicitly as a function of yn - I and xi ,

.i 1,...,n. Let A(w) denote the left hand expression of (13) as a function

of w - xn+ I - xn . It is easily verified that

n Xni +

0O4 -A'(w) x~ -xe
1 ( %+en i )

Since A(w) is monotone decreasing, Xn+ I - xn < 0 for yn n I and > 0

for yn 0 0. Since AO) - 0, (13) can be rewritten as

-15-
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0 (-A' (w))dw y. for y I
n+ I -Xn2

and
X -Xxn+ 1 x1

J0 n A(w)dw -Y - for yn 0

which implies, using -A(w) C n/4,

1 n
y -- B--- ( -x) for Yn I2 4 n+1 xnn

(14)

x ) for y-1 n+-(Yn 2 4) • (n+I-'n) o Yn "0

We can now express xn+, - xn as a Robbins-Monro recursion

bn 1
xn xn - - (y n - ) I
Xn+l n n ~nj 2

1
where bn is Aplicitly defined via the equation A(w) - ± From (14),

bn ) 4. By further bounding b. from above, and modifying the nonadaptive

Ologit-MLla version of (5) as follows,

(15) Xn+ =X -Bn (y - I), B min(bn'B)
- n n-2-n n

where B is a constant > 4, it follows from standard results (Robbins and

Siegmund, 1971) on the consistency of the rn-type recursion that the modified

Ologit-NLr design (15) converges to L. 5  with probability 1.

A similar modification of the adaptive ulogit-LZ" design was considered

in (10). We are not able to give a rigorous proof of its consistency,

although the simulation results of Section 6 suggest that it should be so. We

can prove consistency under the very restrictive condition that the MLZ

(a nAn) in (8) converges uniformly to a constant (a A 0, and
.~ -1 nc-1_ *

therefore xn+l I an - A tn(p -1) converges uniformly to a constant x
X*

More precisely we will prove x - LP, that is, xn converges to the true

parameter Lp whether the true F is logit or not. From (5 ii), we have

H(x I A n - p, where H is the logit function (6), and as n -0 we

obtain H(x*la ) - p. On the other hand, the first equation of (8) is

equivalent to

-16-
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.... (16) - H(xi Ia, ) " - Yinn ni

vhose left hand expression converges to H(x IQA) A p from the uniform

convergence of a and A . For the convergence of the right hand expressionn n

of (16), note that yi has a binomial distribution with parameter F(xi),

where xi is measurable with respect to the past i - I observations. From

a strong law of large numbers in Dubins and Freedman (1965),

n n
a.1 Yi/ F(x ) + 1 a.s.

-1 -1 n
which implies n Yi + F(x ) since n ) F(x) + F(x ). By equating the

*1 1 *

limits of the two sides of (16), we obtain p - F(x ), or equivalently, x =

L p

Assuming the consistency of the Ologit-MLE" design sequence xn, we will

prove that it is asymptotically equivalent to the adaptive U4 procedure

(2a). Consider the approximation

(17) J(t) - p + (tj- I(p))J,(J- (p)), J- (p) - -In(- - 1)
1+e -t p

which is approximately valid for xi close to Lp. By applying (17) to (8)

we obtain

n I n
) (Xx -XL)- -1 (Y p )i p j,( -i )

(19)
n 2  1 n

(AX j, A x )-I(j -1ip)) I( )

= a 1 -1
where the 100p percentile L M a - In( - 1) (p). The

pa. ( n) A

estimator L (19), is obtained from AL and A by solving (18),P p

n n n 2n
(19) (n) AL ) - xi) (yi 'p)xi - I  xi, (y i -P  ,

(19 P A .n n .n n
A X 1) (yi-P)xi - ) xi (YiP)

, .- 17-
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which in the weighted average of x i  with weight wi proportional to*4, n
n ~(n)

(y j-P)(xj-xi). Since L n ) is independent of J'(J-1 (p)), J'(J- (p)) inj
the approximation (17) can be replaced by any other constant without affecting

the subsequent results (19) and (20).

Note that some wi may be negative. The denominator of (19) is equal to
n

n xi - 1) xi, which is nonzero unless ( ) I)- I xi
Yi= I  Yi= I  Yi=l Yi=1

I n
n I x . From (19) and after some algebras, it is easy to show that the

(n+l)th run, according to the procedure (5),
n

L(n) . (n-l) (n - ) (x-n)
ft 2

Xn+ 1 = p - n

nj yi(xi-xo

(20)

c n (Xx-)2
X x 2 _ Y _ (np), c I= -
nn n n n

n

where xn - n I x,• Therefore the linear approximation (20) to our

procedure (5) is asymptotically optimal if cn  in (20) converges almost

surely to [F'(L )] " . To this end, note that the regression slope estimate
Ap

n  in (2a) converges to F'(L p) a.s. By comparing (20) and (2a),

cn - 1 n(x2 -x)/ Yi(X- ). Since both procedures converge to

for large n, x. and c - + 0 follows from the assumptionn n n

F'(LP) > 0. Therefore the asymptotic optimality of (20) follows from similar

results of Anbar (1978) and Lai and Robbins (1981). (Their regularity

conditions do not apply directly to the quantal response problem but their

technique can be modified to suit our purpose.)

%.-1. -



The asymptotic (first order) equivalence of the above two adaptive

procedures can be given a more intuitive explanation. In the adaptive RM

procedure, the slope F'(Lp) of F at L is estimated by the ordinary

regression slope estimate B In the adaptive "logit-MLE" procedure, it is
n

estimated via the MLE of the slope parameter A in the logit model. When

xi are close to LP, the above proof shows that the two estimates (the

latter one being implicit) of F'(Lp) are essentially the same.

6. A simulation study

Under comparison are (i) the logit-MLE version of the sequential design

(5) with truncation as defined in (10) (abbreviated as MLE in the Tables),

(ii) the adaptive Robbins-Monro (ARN) design with truncation,

(21) Xnl " xn " - (yn - p ) ' Cn - max(6, min(c,1 )), c > 6 > 0
A

where n in defined in (2a), and (iii) the Robbins-Monro (RM) design (2).n

The Up-and-Down design (4) was also included in the simulation. The results

are not reported here since it is consistently the worst.

Note that the use of the logit-MLE design requires the existence and

uniqueness of the MLZ, condition (9). To facilitate the comparison of the

three designs, we start with a common initial design and later branch to the

three designs when (9) is satisfied. Two distinct choices of the initial

design are considered. The first has fixed design levels and sample size.

Initial samples that do not satisfy (9) have to be discarded. The second uses

the nonadaptive M design as the initial design and branches to the logit-MLE

and to the ARM at possibly different times. The size of the initial design is

random but no simulation sample is discarded. The uifference between these

two choices of initial design and their practical relevance will be discussed

later.

-19-
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.5 Five models are used in simulating the true quantal response curve, the

logit model (6), the probit model (7), the skewed logit model (22),

(22) H(xlX) - (1+e -Ax) -2  ,

the complementary log-log model (23),

Ax
(23) H(xIA) I - e

1 3 -1
and the logit model with a cubic term, (1 + exp(-x - - x ) . Results from

3

the last model are not reported in Section 6.1 since they give essentially the

same conclusion. For each H, the binary response y = 0 or I is

generated according to u > or < H(x), where u is a uniform random number

in (0,1] and x is the corresponding stimulus level. The same set of

random numbers ui is used for all designs under comparison. Note that for

the logit-MLE design, the MLE is always computed on the logit assumption, no

matter what the true distribution H is.

6.1. Fixed initial designs

A fixed initial design xi, i - I(1)10, is chosen and the corresponding

Yj is generated according to the true distribution H as described above.
" * 10

Let (i10 ,A10) be the MLE of (,A) in the logit model based on {xi,yl}I .

The common starting value for all designs under comparison is chosen to be
x11 " a1 - In(p - I - 1) according to (5)(ii). Once xli is chosen, the

.5. x 1 1 ~ 1 0 - 10 p -1 acrig1

subsequent design levels x12,...,x 35 are generated according to different

design schemes. If the MLE (CI0,A1O) does not exist the simulation sample

is discarded. On the other hand, if (a10 ,1A10 ) exists and is unique, the

subsequent MLE always exists as is obvious from condition (9). This is

repeated for 500 times, including those discarded due to the nonexistence of

MLF°

-20-
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For sample size n, the Monte Carlo mean square error (MSE) of a

sequential design is calculated as the average of (xn - L p2 over the

simulation samples. In Tables I and II, MSE are given for the designs (i) -

(iii) for estimating L0 5  and L for a few initial design. Other

initial designs were considered in Wu (1983). The conclusions are very

similar. In each table L denotes the design level that corresponds to

the 100p percentile of the true response curve. Therefore, for example, the

two initial designs in Tables I(a) and I(b) are identical, but correspond to

different percentiles under different response curves.

The results in Tables I and II are summarized as follows.

(A) General comparison of designs

In general, MLE performs substantially better than ARM and RM, with the

latter two being quite comparable. Only in Table 11(b) does 4-16 (the

Robbins-Monro method (2) with c - 16) outperform the others. But when the

size of the initial design is increased from 10 to 14 as in Table II(bl),

MLZ has again the best performance.

Within R3 we observe the descending order of performance

3M-32 and M-16 > RM-4 > RM-1 > W4-0.25.

Note that RM-4 is asymptotically optimal for the distributions in Tables

I(a)(c), because F'(L 0.5 ) - 1/4. RM-4 fails to deliver this asymptotic

promise of optimality for n as large as 35. To save space, RM-1 and RM-

0.25 are not included in the tables.

-21- "

. . 4 . &. : : .. .- .,, .-..-.- , . , ,,. ....... .. , ..



MMM 1.W VSWI CF WXDMM c7DM~ IGS FOR OMM4TnC ?WE 50
*~EA M OF1fl THE J 7b M D1JLIMJL ZbIE.AONS U-JNVL r IN 500R SVLS

1(a) Initial design: '' % %.S V7 LO.9

no of dlxxwtians 1 2 4 2 1

kue r nse curve: logLt model (6) with a - 0, A -1
In

€wigr 12 16 2) 25 3o 35

NLI-30 1.44 1.02 .72 .56 .43 .36
MNE-S0 1.40 .78 .53 .47 .40 .36
NIE-100 1.40 .60 .49 .46 .40 .36
M -200 1.36 .61 .54 .48 .40 .35
ME-600 1.48 .78 .56 .45 .41 .36
AR4-16 1.55 1.29 1.09 .92 .78 .67
AUG-30 1.52 1.16 .88 .69 .53 .45
ANG-50 1.54 1.16 .91 .69 .55 .46
AU-100 1.59 1.24 .99 .80 .62 .51
AU-600 1.63 2.02 1.66 1.67 1.36 1.12
W4-32 1.84 1.41 1.21 .94 .81 .74

34-16 1.58 1.31 1.14 .97 .83 .73
1*-4 1.59 1.46 1.37 1.29 1.23 1.19

M- 114

11%me lp 100p percntile of the trie rsos curve,

NE'Id - ymp r e. (10) with pm trrcwaticn bournd d and lowr tuncati.on bound 0
ADIERG- - px:ocU (21) with t trcaticn bond c and lower tr=n tia bound 0
34- - Dwap z e (2) with cntant c

N - tal rmzt of shwlatic samples cr which no WI exists

I(b) Itial design (mm 1a (a)): l

no. ci baSvtiIS 1 2 4 2 1

Mm se curve: ]pobit nclde (7) with tt - -0.5, y - 3.1915
n

assign 12 16 20 25 30 35

EM-30 1.87 1.34 1.07 .85 .82 .77
imD-5 1.84 1.10 .88 .83 .77 .73

HM-l10 1.95 .93 .85 .74 .83 .62
MR-200 1.95 .90 .79 .71 .84 .63
MU-= 1.90 1.13 .87 .75 .76 .63
AU-16 2.01 1.70 1.54 1.36 1.21 1.08IR-30 2.00 1.58 1.42 1.23 1.08 .96
AUG-50 2.06 1.62 1.39 1.21 1.07 .92
AUG-100 2.15 1.80 1.56 1.32 1.19 1.02
13-600 2.21 3.32 2.90 2.37 1.86 1.56
R-32 2.16 1.77 1.51 1.35 1.17 1.05
!-16 2.01 1.69 1.47 1.28 1.10 .93
3+4 2.07 1.92 1.81 1.71 1.63 1.56

M1- 56 .4
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stimulus level %.1 %.3 %.5 %.7 %.9
I~c) initial deignt

. of svti ns 1 2 4 2 1

. ue respe u orve: skewed log.t moal (22) with X = 1

n
deLg 12 16 20 25 30 35

HL-30 5.17 3.81 2.90 2.05 1.42 1.02
KB-50 4.93 2.80 1.47 1.00 .93 .89
MKB-100 4.38 1.16 .99 .93 .89 .86

* ,ID-200 3.61 1.10 .95 .92 .88 .85
1H0- 4.03 1.57 .90 .89 .85 .82
134-16 5.37 4.64 4.12 3.61 3.21 2.88
XM-30 5.28 4.28 3.61 3.02 2.56 2.17
AUI-50 5.29 4.29 3.63 3.02 2.56 2.17
134-100 5.33 4.31 3.65 3.04 2.56 2.18
AUt600 5.89 4.82 411 3.34 2.79 2.34
R4-32 5.22 3.86 2.91 2.05 1.50 1.20
3M-16 5.35 4.64 4.11 3.59 3.20 2.86
W4-4 5.52 5.32 5.17 5.02 4.90 4.80

M - 112

d) Iii dl %.1 %0.3 %t0.5 %j.7 %0.9

no. (€ cmmration 1 2 4 2 1

rt'fre e murves coti mwtAzy log-log mode (23) with .- 1

,sigri 12 16 20 25 30 35

LE,-30 2.60 1.72 1.25 .86 .67 .54
MMK-SO 2.42 1.28 .76 .58 .54 .51
M&-lOO 2.09 .96 .65 .59 .52 .49
M*-200 1.95 .89 .65 .65 .52 .48
MUE= 2.93 1.38 .87 ,62 .71 .47
A1M-16 2.80 2.34 2.03 1.74 1.52 1.34
A1I-30 2.77 2.27 1.93 1.61 1.38 1.18
A,-SO 2.76 2.30 1.96 1.64 1.39 1.19
x13-IGO 2.77 2.37 2.00 1.64 1.42 1.20
NRS-E0 2.84 3.23 2.62 2.11 1.82 1.51

3-32 2.81 1.92 1.51 1.11 .95 .84
R+-16 2.79 2.24 1.90 1.59 1.37 1.21
T-4 2.90 2.72 2.59 2.47 2.38 2.30
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MEW n. NNW, OVW ' C SEL LE AL DiaiS FOR WrD=MA ZE 75
P nIaflz op Ta TRE oTL M4SE aJWE (RAS) C 500 SPM S)

1I(a) MIrtial design and true respxoe curve: sawe as in I(a)

d Mig 12 16 2D 25 30 35

HAD-30 1.43 .87 .70 .61 .56 .48
NE-SO 1.36 .80 .64 .56 .53 .47
HD-100 1.38 .77 .64 .58 .55 .50
NED-200 1.43 .77 .65 .59 .56 .50
36I2 o 1.49 .76 .65 .59 .56 .51
AR+-16 1.54 1.19 1.02 .87 .78 .70

AUG-30 1.55 1.21 1.05 .89 .79 .72
AU-50 1.60 1.26 1.09 .93 .83 .75
134-100 1.09 1.37 1.19 1.01 .90 .81
A34-600 1.71 1.41 1.73 1.39 1.16 .98
34-32 1.69 1.23 1.16 .93 .87 .78
R-16 1.51 1.13 .93 .75 .68 .61
34-4 1.57 1.41 1.28 1.17 1.08 1.01

6- 114

IU

Ad i Rmr eqxwi c symbols, owe the bot of£ Tal I(a)

II11b) M.tital dosisn and tre espmL crves ame as in I(b)

dodLm 12 16 20 25 30 35

MED-30 1.97 1.47 1.21 1.16 1.04 .98
E1ID-50 1.95 1.51 1.18 1.12 1.08 1.01
36B-100 2.09 1.38 1.22 1.15 1.11 1.03
UL1-200 2.33 1.43 1.27 1.14 1.11 1.06
HU-O 2.33 1.41 1.55 1.16 1.12 1.06

R34-16 2.02 1.80 1.56 1.40 1.26 1.12

A U-30 1.98 1.74 1.54 1.32 1.20 1.16
A34-W 1.99 1.80 1.69 1.46 1.28 1.23

AM4-100 2.07 2.08 1.92 1.63 1.45 1.40

134-600 2.08 3.85 3.39 2.98 2.41 2.19
36-32 2.01 1.52 1.45 1.29 1.19 1.07
34-16 1.95 1.46 1.20 1.03 .91 .82

344 2.08 1.86 1.71 1.56 1.45 1.36
N -56
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nZ(bl) Dd.tal designs tmlslvl . %4 .61.6%8

,,o. cE dxwwticra 1 3 6 3 1

hiLt.ial smple sizes 14

mrwi onwe an'w: sum as in U(b)

n
aicgp 16 20 25 30 35

KLID-30 2.23 1.63 1.37 1.13 .99
EB-50 2.23 1.42 1.20 1.06 .97

MRE-100 2.27 1.31 1.16 1.07 1.01
MLI-200 2.76 1.40 1.18 1.11 1.03
HUI-" 2.91 1.48 1.17 1.25 1.07

.2 1-0 2.24 1.91 1.60 1.44 1.31
A13-50 2.26 1.97 1.71 1.52 1.38
136-100 2.31 2.10 1.82 1.62 1.41
A3*-0 2.96 3.36 3.12 2.72 2.38
34-32 2.15 1.67 1.36 1.20 1.04
1R3-16 2.20 1.77 1.46 1.28 1.13
It" 2.31 2.15 2.01 1.90 1.81

N1- 16

*as as :in 'nr(b)

IX(c) 1%tial dhign aid ton mwpm aim: mm as In 1(c)

oig 12 16 20 25 30 35

WB-30 3.85 3.04 2.63 2.26 2.02 1.83
KHrn-50 3.67 2.59 2.07 1.59 1.25 1.01
IL!!-1 3.35 1.80 1.02 .97 .91 .91

EB-200 2.98 1.09 .96 .96 .91 .89
KEU-600 1.87 1.28 .98 1.17 .91 .90
A3-30 3.95 3.22 2.76 2.35 2.10 1.88
1U-50 3.88 2.96 2.36 1.81 1.47 1.20
AM3-100 3.75 2.50 1.76 1.41 1.22 1.11
16 -200 3.52 2.24 1.87 1.47 1.29 1.15
AM-60 3.52 2.60 2.53 1.92 1.57 1.33
16-32 3.92 3.09 2.66 2.25 2.01 1.79
36-16 4.00 3.48 3.18 2.92 2.72 2.57
36-4 4.13 3.97 3.85 3.73 3.65 3.58

K" 112
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d

* 1(d) 3hitial design and true response curve sUT as in I(d)

n . '

dein12 16 20 25 30 35

NER-30 4.63 3.64 3.18 2.70 2.37 2.11
,UD-50 4.48 3.16 2.43 1.79 1.41 1.14
3XB-10 4.36 2.08 1.21 .91 .92 .87
UE-200 4.67 1.41 1.09 .89 .90 .85

1113-60 4.97 1.92 1.00 .85 .93 .85
AR4-30 4.74 4.03 3.67 3.35 3.11 2.91
134-5D 4.77 4.08 3.70 3.37 3.13 2.93
AM1-100 4.89 4.17 3.77 3.43 3.19 2.99
A34-20D 5.16 4.47 4.02 3.66 3.39 3.18
A34-600 6.54 5.61 4.95 4.45 4.10 3.82

R-24.63 3.75 3.25 2.76 2.40 2.14
R-16 4.74 4.13 3.81 3.53 3.32 3.14
3+-4 4.89 4.69 4.55 4.43 4.33 4.25

N = 69

(B) Superiority of the logit-MLE design.

The superiority of the logit-44L3 design (10) with upper truncation

bound d and lover truncation bound 0, hereafter denoted as ML-d, is

broad-based. In the nine tables, ML-SO, MLE-100, MLE-200 consistently out-

perform the best 131. Except in Table 11(c), KLE-30 outperforms the best

1344. The efficiency gain of XLE over AM4 is more conspicuous for larger n.

What truncation bound d should be chosen?" The MA! designs with

50 4 d C 600 all perform well. Within this range their difference of

performance is probably negligible. MLE-30 does not perform as well, because

a forceful truncation like d - 30 limits the potential of the MLE design in

making more flexible and justifiably large moves.

Since a major purpose for finding better designs is to reduce the number

of runs required for satisfying an error bound, we shall measure the

efficiency gain of the ME design over the AM4 design by such numbers. in

each case, we find the smallest V14SZ achieved by the best 134 design at

-26-
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n = 35. We then find m to be the smallest sample size at which an MLE

design achieves the same 4Mii. In Table III, the values of m are obtained

by linear interpolation for the nine tables in Tables I and II. The

percentage of runs saved by using the best MLE design instead of the best ARM

design ranges from 25% to 57%.

Table III. Values of m for Tables I(a)-(d), II(a)-(d)

I(a) I(b) I(c) I(d) 11(a) I(b) II(bl) II(c) 11(d)

tl

26 16 15 15 18 25 20 16 15

C. AIRM or N?

The best W4 design is RM-32 or PM-16 and is quite comparable to the best

ARM design. In Tables I(c)(d), II(a)(b)(bl)(d) it even beats the best ARM.

But the performance of the RM design depends critically on the choice of the

constant c in (2), which may not be available in practical situations. On

the other hand, the ARM-c (procedure (21) with upper truncation bound c and

lower truncation bound 0) performs well and stably over a broader range of

the c values, 16 4 c 4 100 for L0o 5  and 30 C c 4 200 for L0.75. The

ANI-600 design, which uses a loose truncation bound, is consistently worse

than the best AM design and the best AM design. Moreover its MSE exhibits an

erratic pattern, e.g., it sometimes increases as n increases. Generally the

ARM requires more severe truncation than the MLE. This is because the ARM can

make an unduly large move as explained in Section 2.

D. For the same truncation bound, the MLE design always requires more

truncations than the A3M Design. It suggests that the MLE design makes large

-27-
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moves more frequently than the A94 design. Since MLE-100, MLE-200 and MLE-600

Ido very well in the study, such large moves are probably justifiable.

We have also examined the empirical behavior of the same set of designs

for initial designs of size 25. The results are very similar. As the size

of the initial design increases, the number of simulation samples for which no

MLE exists quickly drops.

6.2 Nonadaptive R4 as the initial designs

We choose two starting values x, - L0.6  and L0.9  and three recursive

schemes M4-1, M4-4 and M4-16 as the common initial desians. The logit model,

(6), the skewed logit model (22) and the complementary log-log model (23), all

with F'(L 0.5 ) - 1/4, are considered. The two initial designs RM-1 and W4-16

correspond to over- and under-estimates of the true slope F'(L0. 5 )• The

starting values L and L0 9  represent good and poor guesses of L0 5 .

Define the two switching times as follows:

n1 - first n ) 5 such that Bn, (2a) is non zero,

n2 - first n ) 5 such that (9) is satisfied.

For each initial design, denoted by D, three sequential designs are

considered:

I. design D for 1 4 n 4 35

II. design D for 1 4 n 4 n,, followed by the adaptive 4, (21),

with truncation bounds 6 and c for n1 + I C n C 35 (denoted

by AM(8,c))

11. design D for 1 4 n 4 n 2 , followed by the logit-ML2, (10), with

truncation bounds 8 and c for n2 + 1 4 n 4 35 (denoted by

M.,(6, c)).

The size of the initial design n 1 or n 2 is random and n1  is always

smaller than or equal to n2. The time n1  for switching to the ARM is 5

in most situations. The interquartile range for n2  (time for switching to
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the MLE) is (6,8] or [7,9]. We have also tried a delayed version of design

II, namely, to switch to the ARM at time n2 instead of n,. Its performance

is somewhat inferior and is therefore abandoned. As argued in Section 3, it

may not be a good idea to start the logit-IMLE recursion as soon as (9) is

satisfied. To prevent the MLE estimate from being "trapped" at a point far

from L0.5, we consider a delayed version of the above design III with

lag 1,

(24) IV. design III with n replaced by n2 + X (denoted by EMLE (8,cL))

We choose (8,c) - (0.01,600) and (1,100) in the simulation study. Only

the estimation of L0.5 is considered. The Monte Carlo mean square error of

each design is computed based on 1000 simulation samples. To save space,

the results on the skewed logit model are not given here since they are quite

consistent with those reported in Table IV.

The results in Table IV do not exhibit a clear-cut pattern as those in

Section 6.1. To facilitate the following discussion, we group the six initial

designs into two categories (G for good, P for poor):

(G) (L0.613R-1), (L 0 . 6 ,R4-4), (L0 .9,3R-4)

(P) (L0 .6 ,3M-16), (L0 .9,3M-1), (L0.9,RM-16)

Since the performance depends on the initial design, we start our comparison

on the nonadaptive RM design.

1) For x1 -L 0 6 , 4-1 > 34-4 > R3-16 ,

for xI - L 0 .9, RM-4 > 3M-16 > RM-1 ,

where U>. denotes "better than". The choice of the starting value x,

interacts with the choice of the constant c in 34-c. Since F'(L 0.5 ) =

1/4, RM-4 is asymptotically optimal, which confirms the result for x,

L0 .9
o But when the starting value L0.6  is close to the true parameter
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ZV(a) " r.esponsecure: o ogit model (6) with - 0, X - 1 (F' (L,. 5 ) -1/4)

otarting initial sequential n

V*h deign deign 10 12 16 20 25 30 35

x "LOA M-i R+- 1 .46 .45 .43 .41 .39 .38 .36
AR4(0.01,600) .53 .52 .50 .48 .63 .64 .58
AO4(1,100) .52 .53 .53 .49 .46 .44 .42

M1(0.01,600) .49 .52 .47 .47 .47 .45 .51
[(1,100) .50 .48 .47 .44 .43 .41 .38

M4(1,100,3) .50 .59 .46 .45 .41 .41 .39

R4-4 n4+4 .73 .65 .57 .51 .44 .39 .36
AR4(0.01,600) .99 .89 .77 .69 .59 .52 .46

360(1,100) .99 .89 .77 .68 .9 .51 .46
44(0.01,600) .80 .77 .72 .64 .60 .59 .55
wZ12(1,100) .79 .78 .70 .60 .55 .52 .46
[3Z(1,100,3) .77 .70 .62 .58 .54 .49 .45

36-16 R4-16 1.08 .98 .83 .71 .64 .59 .51
134(0.01,600) 1.11 .94 .75 .62 .54 .50 .43
134(1,100) 1.11 .94 .75 .62 .54 .50 .43
31(0.01,600) .77 .74 .64 .61 .58 .56 .54
ME( 1,100) .77 .69 .61 .56 .51 .47 .44
l341(1,100,3) .98 .79 .64 .56 .51 .46 .43

x- 1  .9 -1 +-1 1.29 1.23 1.16 1.10 1.05 1.01 .97
0(0.01,600) 4.44 3.93 3.27 2.83 2.44 2.01 1.65

131(1,100) 1.39 1.26 1.13 1.03 .87 .75 .65
3620.01,600) 1.27 1.45 1.72 1.31 1.01 .88 .83

36(1,100) 1.17 1.25 1.03 .86 .77 .70 .61
EMM21,100,3) 1.19 1.17 1.01 .87 .76 .70 .61

33- -4 475 .67 .57 .51 .43 .40 .36
134(0.01,600) 1.07 .95 .75 .67 .61 .60 .54

(1, 100) 1,07 .94 .74 .64 .55 .48 .43
36,(O.01,600) .79 .95 .81 .65 .60 .59 .58
MW 1,100) .78 .77 .67 .62 .54 .51 .47
D-X( 1,100,3) .75 .87 .64 .58 .51 .47 .45

36-16 M-16 1.07 .97 .80 .72 .63 .58 .51
M1(0.01,600) 1.00 .84 .67 .59 .50 .46 .41

A34(1,100) 1.00 .84 .67 .99 .50 .46 .41

36(0.01,600) 1.09 1.01 .94 .92 .89 .86 .84

3W ,1,100) 1.06 .97 .87 .79 .74 .68 .62
D9621,100,3) 1.09 .92 .74 .65 .57 .52 .48

Sz- lOq p r,,*tl Ce the tue m cu ve

34-c - pwa ns (2) with o tAft C
(8,c) - proocie (21) with latw an truncatiei bounds 8 and c

MW8,c) - prunods e (10) with I and trucatLim b mde 8 c
D" 6,C,L) - deayed W. procedure (24) with , and tr ncta bmimds

ad €, Iagct delay I
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IV(b) 'frcm requ oal : coplaSiuary log-log mode1 (23) with X - 0.721 (F'(L0 5 ) ,/4)

starting initial ooqmntia1 n
vadsgn degn 10 12 16 20 25 30 35

X, ML0. 6  34-1 R4-1 .44 .43 .40 .39 .37 .35 .34
0R4(0.01,600) .51 .50 .48 .46 .62 .63 .57

AR4(1,100) .50 .51 .51 .48 .45 .43 .40
I31Z(0.01,600) .47 .50 .45 .45 .46 .42 .50
361(1,100) .47 .45 .45 .42 .41 .38 .36
D6.(1,100,3) .48 .57 .44 .43 .39 .39 .36

34-4 R4-4 .69 .63 .55 .50 .43 .39 .35
A.4(0.01,600) .97 .88 .77 .68 .58 .52 .47
"34(1,100) .97 .88 .77 .68 .58 .52 .47
NIB(0.01,600) .73 .70 .65 .82 .57 .55 .62
M. I£(, 100) .71 .70 .63 .57 .53 .49 .45

.DU.(1,100,3) .74 .68 .62 .57 .52 .47 .44

34 R4-16 1.09 .97 .82 .72 .64 .58 .51
* A4(0.01,600) 1.09 .94 .75 .61 .54 .50 .43

A1.(1,100) 1.09 .94 .75 .61 .54 .50 .43
361(0.01,600) .76 .71 .62 .60 .57 .55 .53
361.(1,100) .75 .69 .59 .55 .50 .47 .44
1361(1, 100,3) .98 .75 .60 .54 .48 .45 .42

x4l "i-1 16-1 .96 .82 .76 .72 .68 .65 .63
A (0.01,600) 3.84 3.41 2.83 2.45 2.01 1.75 1.41
=.(1, 100) 1.11 1.03 .97 .8 .76 .68 .61

1Mi(0.01,600) .87 1.03 1.36 .91 .83 .66 .61
161(1,100) .81 .85 .73 .67 .58 .55 .51
DJ6(1,100,3) .83 .89 .77 .66 .60 .54 .49

36-4 3-4 .6 .60 .53 .47 .41 .37 .34
A3(0.01,600) .95 .85 .75 .64 .55 .48 .43
A1M(1,100) .95 .85 .71 .62 .53 .47 .42
M1(0.01,600) .71 .78 .74 .61 .54 .51 .48
361(1,100) .70 .69 .63 .58 .50 .47 .43
WI,(1 100, 3) .73 .83 .60 .54 .50 .45 .42

R4-16 R4-16 1.04 .96 .84 .73 .62 .57 .51
AR(0.01,600) 1.01 .89 .70 .61 .51 .46 .41
A13(1,100) 1.01 .89 .70 .61 .51 .46 .41

M61(0.01,600) .94 .83 .75 .72 .69 .67 .64
31(1, 100) .94 .83 .71 .64 .59 .53 .50
I361(1,100, 3) 1.06 .86 .67 .59 .52 .48 .45
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LO. 5 , the simulation result defies the asymptotic prediction. In tact,

according to a standard asymptotic result on M (Lai and Robbins, 1979,

Theorem 2 (ii)), the convergence rate of xn - L0.5 for xn  generated by

is -0.25RM-1 is of order n-  while both RM-4 and RM-16 give the better con-

vergence rate n05* The reason that the asymptotic results are not

applicable here is because, for xI close to L0.5, a small c in the

FN4 recursion (2) is needed to ensure a steady convergence to L0.5" Even

a moderate value like c = 4 will make the correction

i~n1  Xn =4 1 2

n n n 2 n

too fluctuating for small n.

2) The AW4 designs, despite the asymptotic promise, do not do as well as the

r-designs. For the poor initial design (L0 .9,RM-1), ARM(O.01,600)

performs miserably. By choosing tighter truncation bounds, ARM( 1, 100)

improves over ARM(0.01,600) and even beats RK-1 in the standard logit

model. The only other case that gives the AM an edge over the W4 is the

initial design (L0.9,R4-16) in category (P).

3) Three versions of the HLE designs are under comparison. There is a sub-

stantial improvement over MLE(0.01,600) by using MLE(1,100) with tighter

truncation bounds. Additional improvement is made by using the delayed-

ML! design £KLE(1,100,3) with lag 3. When (and only when) the initial

designs are in category (P), MLE(1,100) and roLE(I,100,3) beat the T4

design. In a few cases, MLE(0.01,600) also beats the M4-design. The

superior performance of the W4 designs in category (G) depends critically

on good prior knowledge of L0 . 5 and F'(L0 . 5 ). When such knowledge is

not available, the ML! design, MLE(1,100), does better. Of course the

choice of the tighter bounds I and 100 in MLE(1, 100) assumes a good

knowledge of the slope F'(L 0.5 ) (but not of L0.5 ), though not in the

same degree as the R3 designs.
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4) The conclusions seem to be independent of the choice of distributions.

The results from (not reported here) the skewed logit model lead to the

same conclusions.

7. Concluding remarks

In this paper a new class of sequential designs for binary response data

is proposed. Its consistency and asymptotic normality, via its connection

with the Robbins-Monro method, are demonstrated under rather restrictive

conditions. These methods are compared in a simulation study for sample sizes

up to 35. It is somewhat unexpected that their relative performance depends

quite heavily on the choice of the initial designs. The fixed initial designs

in Section 6.1 have design levels spreading evenly over wider intervals. The

levels of the nonadaptive Robbins-Monro designs in Section 6.2 tend to be

unevenly distributed and not so wide-spread.

The empirical results suggest that, when a good initial RM design is

available, the R4 design should be used for the first phase of the experiment.

For larger n, 3M may be replaced by AR4 or MLE to take advantage of the

asymptotic optimality of the latter designs. But if the quality of the

initial NE design is not certain, a MLE design with tighter truncation bounds

or its delayed version should be used. It is possible that other

modifications of the 1LE design will further enhance its utility. This merits

further study.

It is easy to conceive practical situations in which other initial

designs are preferred. The experimenter may not have any vague idea about

and F'(Lp), two elements critical to the performance of the RN design.

One common practice is to choose a wide interval that is believed to contain

the target value P, and to place the initial design levels evenly over the
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interval, including the two end points. It avoids the adverse effect of

extremely misleading guesses. The business of choosing the first five to

eight design levels is a very subjective one. A good experimenter will

exercise his best judgement and utilize whatever prior knowledge available to

him in making his choice.

The simulation results of Section 6.1 suggest that the MLE design can

take full advantage of the past information if the initial design levels are

wide-spread, and the response region and the nonresponse region overlap. The

latter condition implies that (9) is satisfied. Since the initial samples

that do not satisfy (9) are discarded in the simulation, our conclusion should

only apply to those initial samples that are ready for the application of the

MLE design. For initial sample size 10, the number of discarded samples is

not negligible (between 56 and 114 out of 500, Table II). When the initial

sample size is raised to 14, as in Table II(bl), the number drops from 56 to

14 while the number of runs saved by the latter design increases (Table III).

The percentage of discarded samples would be much smaller in practical

situations since any sensible experimenter should be able to conduct the first

ten runs to satisfy condition (9).

In summary, the proposed HLE designs are useful alternatives to the

standard ones. They perform well in some selected situations. Further study

is needed to find ways of improving their efficiency and to identify

situations, including the choice of initial designs, in which they excel over

their competitors.
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